4. Representations of the Electromagnetic Field

A full description of the eclectromagnetic ficld requires a quantum statistical
treatment. The electromagnetic field has an infinite number of modes and ecach
mode requires a statistical description in terms of its allowed quantum states.
However, as the modes are described by independent Hilbert spaces, we may
form the statistical description of the entire field as the product of the distribu-
tion function for each mode. This enables us to confine our description to
a single mode without loss of generality.

In this chapter we introduce a number of possible representations for the
density operator of the electromagnetic field. One representation is to expand
the density operator in terms of the number states. Alternatively the coherent
states allow a number of possible representations via the P function, the Wigner
function and the Q function.

4.1 Expansion in Number States

The number or Fock states form a complete set, hence a general expansion of
pis

p= zcnm|”><3n| . (41)

The expansion coefficients C,, are complex and there is an infinite number
of them. This makes the general expansion rather less useful, particularly
for problems where the phase-dependent properties of the electromagnetic field
arc important and hence the full expansion is necessary. However, in certain
cases where only the photon number distribution is of interest the reduced
expansion

p = ZP,,|;1><n| s 4.2)

may be used. Here P, is a probability distribution giving the probability of
having n photons in the mode. This is not a general representation for all fields
but may prove useful for certain fields. For example, a chaotic field, which has
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no phase information, has the distribution

l Y_I n
.F”l _ T . ) (43)
(1 + n) (I + n)

where 71 i1s the mean number of photons. This i1s derived by maximising the
entropy

S= —Tr{plnp;} . (4.4)
subject to the constraint Tr { pa‘a] = i, and is just the usual Planck distribution
for black-body radiation with

N ‘ (4.5)

The second-order correlation function ¢?(0) may be written according to (3.66)

Vin)—n

n

g2 0) =1+ (4.6)
where V(n) is the variance of the distribution function P,. Hence, for the
power-law distribution V(n)=n* + i we find ¢®(0) = 2. For a field with
a Poisson distribution of photons

p =5 i 4.7)

oo
the variance V' (n) = a1, hence ¢*'(0) = 1.
A coherent state has a Poisson distribution of photons. However, a measure-
ment of ¢'?(0) would not distinguish between a coherent state and a field
prepared from an incoherent mixture with a Poisson distribution. In order to

distinguish between these two fields a phase-dependent measurement such as
a measurement of AX,;, AX, would need to be made.

4.2 Expansion in Coherent States

4.2.1 P Representation

The coherent states |« ) form a complete set of states, in fact, an overcomplete set
of states. They may therefore be used as a basis set despite the fact that they are
non-orthogonal. The following diagonal representation in terms of coherent
states was introduced independently by Glauber [4.1] and Sudarshan [4.2]

p = Pl)ad{aldx , (4.8)

where d?2 = d(Re{«})d(Im{«}). Tt has found wide-spread application in
quantum optics.
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Now it might be imagined that the function P(x) is analogous to a probabil-
ity distribution for the values of z. However, in general this is not the case since
the projection operator |%><{«| is on to non-orthogonal states, and hence P(%)
cannot be interpreted as a genuine probability distribution. We may note that
the coherent states |2) and |2') are approximately orthogonal for | — o'| > 1,
see (2.41). Hence, il P(a) is slowly varying over such large ranges of the
parameter there is an approximate sense in which P(x) may be interpreted with
a classical description. There are, however, certain quantum states of the
radiation field where P(x) may take on negative values or become highly
singular. For these fields there is no classical description and P(z) clearly cannot
be interpreted as a classical probability distribution. Let us now consider
examples of fields which may be described by the P representation:

(i) Coherent state

If

p = %0 {%]| . (4.9)
then

P(x) = 0o — 2q) . (4.10)

(i) Chaotic state
For a chaotic state it follows from the central limit theorem that P(x) is
a Gaussian

Pla) = o117 @.11)

That this is equivalent to the result for P, is clear if we take matrix elements

|:x|2n

1 2 ; 1412 43
P, = {nlpin) = jP(a)[(rﬂx)Fdza =— .[C AP et 5Py o (4.12)
T

n!
Using the identity
ot (tm!) 2 fexp(— Cla)®)a (a*)y"d?a = 9, C~ MY (4.13)
which holds for C > 0 and choosing

1 _
C=:- Th

1 n "
P — .
T +ﬁ<1 +ﬁ) (4.14)
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For a mixture of a coherent and a chaotic state the P function is

1 . _
Pla)= ——¢ 1z w0 (4.15)
mh

which may be derived using the following convolution property of P(x). Con-
sider a field produced by two independent sources. The first source acting
constructs the ficld

p1 = | Py(ay)]oy <oy d?ay . (4.16)
Acting alone the second source would produce the field
P2 = | Py(aa)| 22 y<{ay| %oy = | P1(23) D(22)|0><0[ D™ ! (25)d? x5 . (4.17)
The second source acting after the first field generates the field
p = [ Pa(x2)D(ez)p D™ 1 (22)d? 2,
= [ Py(o2)Py(oty)|oty + o3 0<0y + 25| d?oy d?a; (4.18)
The weight function P(x) for the superposed excitations is therefore
P(2) = [ 8% — 2y — 22) Py(21) Pa(2y)d? 2, d? 2,
= [ Py(x — o) Py()d? o . (4.19)
We see that the distribution function for the superposition of two fields is the

convolution of the distribution functions for each field.

ay Correlation Functions

The P(x) representation is convenient for evaluating normally-ordered products
of operators, for example

<a1uam> — l‘ P(x}a*uamdlx ) (420}

This reduces the taking of quantum mechanical expectation values to a form
similar to classical averaging.
Let us express the second-order correlation function in terms of P(x)

L P2 = (o> )P s (4.21)

g?
= [§ P()|a|? d?a]?

This looks functionally identical to the expression for classical fields. However,
the argument that ¢‘*(0) must be greater than or equal to unity no longer holds
since for certain fields as we have mentioned P(x) may take on negative values
and allow for a ¢'¥(0) < 1, that is, photon antibunching,
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A similar result may be derived for the squeezing. We may write the
variances in X, and X, as

AXT = {1+ [P)[(x + 2*) — (o) + <a*))]*d%x} |

il ol (5)- (5 o]

The condition for squeezing AX] < 1, requires that P(x) takes on a negative
value along either the real or imaginary axis in the complex plane, but not both
simultaneously. Thus squeezing and antibunching are phenomena which are the
exclusive property of quantum fields and may not be generated by classical
fields. Some ambiguity may arise in the case of squeczing which only has
significance for quantum fields. If a classical field is assumed from the outset
arbitrary squeezing may occur in either quadrature or both simultaneously.

Quantised fields for which P(x) is a positive function do not exhibit quantum
properties such as photon antibunching and squeezing. Such fields may be
simulated by a classical description which treats the complex field amplitude ¢ as
a stochastic random variable with the probability distribution P(g) and hence
may be considered as quasiclassical. Coherent and chaotic fields are familiar
examples of fields with a positive P representation. Quantum ficlds exhibiting
antibunching and/or squeezing cannot be described in classical terms. For such
fields the P representation may be negative and highly singular. The coherent
state has a P representation which is a delta function, defining the boundary
between quantum and classical behaviour. For fields exhibiting quantum behav-
iour such as a number state [n) or squeezed state |, ¢ ) no representation for
P(x) in terms of tempered distributions exists. Though representations in terms
of generalised functions do exist [4.3], such representations are highly singular,
for example, derivatives of delta functions. We shall therefore look for alterna-
tive representations to describe such quantum fields.

b) Covariance Matrix

Gaussian processes which arise, for example, in lincarized fluctuation theory
may be characterized by a covariance matrix. A covariance matrix may be
defined by

(a*y —<{a)? $<aa" + a'a) — (a'y<a)
$<aa' +a'ad — (a'y<{a) {at?y — {at)?

One may also introduce a correlation matrix C(X,, X,) for the quadrature
phase operators X, and X,:

CX1, X2)pq = 3K, X, + X, X,) — <X, 0<X,> (pg=1,2) . (4.24)
These two correlation matrices are related by

C(X, X3)=QC(a,a"H)Q" (4.25)

C(a,a") = ( ) . (4.23)
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where
1 1
Q= . I
—1 1

The covariance matrix C,(x, 2*) defined by the moments of x and 2* over
P(x, 2*) 1s related to the covariance matrix C(a, a') by

Cla,a"y = Cpla,2*) + ;(? (1}) . (4.26)

The distribution can be written in terms of the real variables
l
Xy, =% + ¥, Xy = (20— a%)
i

for which the covariance matrix relation is

C(X1.X3)=Cplxy.x2)+ 1. (4.27)

¢) Characteristic Function

In practice, it proves useful to evaluate the P function through a characteristic
function.
The density operator p is uniquely determined by its characteristic function

() = Tr {pe™® " me} .

We may also define normally and antinormally ordered characteristic functions
intn) = Tr{pe"e "} | (4.28)
2aln) = Tr{pe meen’) (4.29)

Using the relation (2.25) the characteristic functions are related by
1) = an(nexp(—31n1%) . (4.30)

If the density operator p has a P representation, then yx(n) is given by
i) =  Calere

Writing n and z in terms of their real and imaginary parts we find that (4.31)
expresses yn(#n) as a two-dimensional Fourier transform of P(x). The solution for
P(a) 1s the inverse Fourier transform

2y P(2)d?a = [ ™ " P(g)d?a (4.31)

1 -
P(z) = QJC“" M oan(m)d?n (4.32)

T n?
Thus the criterion for the existence of a P representation is the existence of
a Fourier transform for the normally-ordered characteristic function y~(#).
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4.2.2 Wigner’s Phase-Space Density

The first quasi-probability distribution was introduced into quantum mechanics
by Wigner [4.4]. The Wigner function may be defined as the Fourier transform
of the symmetrically ordered characteristic function y(x)

1 "
Wi{x) = = J exp(n*x — na*)z(n)d?y . (4.33)

The Wigner distribution always exists but is not necessarily positive.

The relationship between the Wigner distribution and the P(«) distribution
may be obtained via the characteristic functions. Using (4.30) we may express
the Wigner function as

~

| .
W(:(} — F cxp(ﬂ*fx —_ ’?3*)ZN(?IJC_I 2|n| d“]’,‘
= —l, Tr{pc"f“"z"'e 'H”‘{u—zl: e ! 2"”2(12)1
2
! [ 2 bl
= P(Byexpln(p* — o*) — p*(f — 2) — FIy|?]d?pd?p . (4.34)

Substituting & = ;1,-'\;'5 leads to

-4

-

Wi(z) = - JP([f)cxp[\;E::(ﬁ* a*) — Vr"'iz;*{ﬁ — ) — |e|*]1d?ecd?p. (4.35)

The integral may be evaluated using the identity

I

1 2 A oo v .
- dnexp( — 2lyl” + wy + vyp*) = —exp = (4.36)
which holds for Re |/} >0 and arbitrary g, v. This gives

Wix) =

Al

jP[ﬂ]cxp( —2|B —«|*)d?B . (4.37)

That is, the Wigner function is a Gaussian convolution of the P function.
The covariance matrix C, (x, «*) defined by the moments of o and o* over
Wi(x, 2*) is related to the covariance matrix C(a, a’) defined by (4.23) by

Cla,a’) = C, (o 2*) . (4.38)

The error areas discussed in Chap. 2 may rigorously be derived as contours
of the Wigner function. We shall now study the Wigner functions for several
states of this radiation field and their corresponding contours.
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For certain states of the radiation field the Wigner function may be written
in the Gaussian form

W(xy, x3) = Nexp(—10) (4.39)
where Q is the quadratic form
O=(x—a)A Y (x—a) (4.40)

and N is the normalization. A contour of the Wigner function is the curve Q = 1.
We choose to work in the phase space where x; and x, are the c-number
variables corresponding to the quadrature phase amplitudes X, and X,.

a) Coherent State
For a coherent state 2> = |3(X, + 1X,)) the Wigner function is
Wi(x|, x5) = %cxp[ - %(x’f + x’f):| (4.41)
where x; = x; — X;. The contour of the Wigner function given by Q =1 1s
XP+x7F=1. (4.42)

Thus the error area is a circle with radius 1 centred on the point (X ;. X»)
(Fig. 2.1a).

b) Squeezed State

The Wigner function for a squeezed state is

2 1.
Wix') == exp[ —s(xfe 4 x’fch):| . (4.43)
7T &~
The contour of the Wigner function given by Q = 1 1s
X X5
e_zlr _E_"‘b =1 (4.44)

which is an ellipse with the length of the major and minor axes given by ¢” and
e ', respectively (Fig. 2.1b).

¢) Number State
The Wigner function for a number state |n) is
. 2 . 2
Wixy, x;3) = ;{ — 'L, (4r¥)e 2 (4.45)

where r? = x{ + x3, and L,(x) is the Laguerre polynomial. This Wigner func-
tion is clearly negative.
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The Wigner function gives direct symmetrically-ordered moments such as
those arising in the calculation of the variances of quadrature phases.

4.2.3 O Function

An alternative function is the diagonal matrix elements of the density operator
in a pure coherent state

Qx) = KUY (4.46)

e

This is clearly a non-negative function since the density operator is a positive
operator. It is also a bounded function

Q) < — .

n
Writing the distribution in terms of the real variables
Xy =2+ o*, Xy = —i(a— a¥)
the covariance matrix relation is

C(X1, Xp) = Colxy,xy) = I .

The @ function may be expressed as the Fourier transform of the anti-
normally-ordered characteristic function y,(x)

aa(n) = Tripe %™ | = Jﬂd:( {a]e™ pe o) = [e"‘““""Q(x)dzy .
d (4.47)
Thus Q(z) is the inverse Fourier transform
Q(x) = ni JC“”“‘“’"ZA(H)dErz : (4.48)
The relation between the P(2) and the Q(x) follows from
06) = 0 = L [ppicapyratp =1 [ppeitaty . as

That is, the @ function like the Wigner function is a Gaussian convolution of the
P function. However, it is conyoluted with a Gaussian which has \/5 times the
width of the Wigner function which accounts for the rather more well-behaved
properties.

The Q function is convenient for evaluating anti-normally-ordered moments

a"a'™) = [a"a*™Q (o, a*)d > . (4.50)
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The covariance matrix Cgy(z, 2*) defined by the moments of x and a* over
Q(x, o¥) is related to the covariance matrix C(a, a') defined by (4.23) by

. , 1/0 1
Cla, a’) = Cola, 2*) — 3 (l 0) : (4.51)

The Q function has the advantage of existing for states where no P function
exists and unlike the Wigner or P function is always positive. The Q functions

for a coherent state and a number state are easily obtained.
For a coherent state | ) the Q function is

. 2 “lx— g2
T ws2)

T T

Q(x)

For a number state |#) the Q function is

[{and > Jaf?re 12
T mal (4.53)

Q)

The Q function for a squeezed state |, r) is defined as
1 2
QB %) = _[<AID)S(]0>]" - (4.54)

This is a multivariate Gaussian distribution and may be written in terms of the
quadrature phase variables x; and x; as

Q(xy, x;) = exp[ — 3(x — x0) ' C M — x0)] (4.55)

4r? coshr
where
xo = 2(Re {2}, Im{x}) ,

X =(x;,x3) .,

= e+ 1 0
o 0 e+ 1)

The Q function for a squeezed state is shown in Fig. 4.1.

4.2.4 R Representation

Any density operator p may be represented in a unique way by means of
a function of two complex variables R(a*, ) which is analytic throughout the
finite «* and f planes. The function R is given explicitly as

R(a*, B) = {alp|Byexpl(la)® + |B1%)/2] . (4.56)
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Fig. 4.1 Q function for a squecczed state with coherent amplitude » = 2.0, r = 1.0

We may express the density operator in terms of R(x*, )
l 2 2y 2 32 2
P= waa*, Pple ETII 2d2adp (4.57)

The normalization condition
Tt A1

implies

™ d2 dedz__
J(H><oc|p|ﬁ><ﬁlz' L (4.58)

Interchanging the scalar products and performing the integrations over ff and
v we arrive at the result

n nT =

:J@iplx)dz'x:l (4.59)

which gives the normalization condition on R
1 >
—jR(oc*, aje 1*Pd2g =1 . (4.60)
n

The function R(2*, ) is analytic in * and f§ (and therefore non-singular) and
is by definition non-positive. It has a normalization that includes a Gaussian
weight factor. For these reasons it cannot have a Fokker-Planck equation or
any direct interpretation as a quasiprobability. Nevertheless, the existence of
this representation does demonstrate that a calculation of normally-ordered
observables for any p is possible with a non-singular representation.
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4.2.5 Generalized P Representations

Another representation which like the R representation uses an expansion in
non-diagonal coherent state projection operators was suggested by Drummond
and Gardiner [4.5]. The representation is defined as follows

p= ,[A(Z, PYP (=, B)du(z, f) (4.61)
D
where
(2 ]
Alx, f) = —=
SLARET R

and du(z, ) is the integration measure which may be chosen to define different
classes of possible representations and D is the domain of integration. The
projection operator A(x, f§) is analytic in x and fi. It is clear that the normal-
ization condition on p leads to the following normalization condition on P(x, f5)

IP{J, Mydu(x fy =1, (4.62)

D

Thus, the P(x, f) is normalisable and we shall see in Chap. 6 that it gives rise to
Fokker- Planck cquations. The definition given by (4.61) leads to different
representations depending on the integration measure.

Useful choices of integration measure are

I. Glauber-Sudarshan P Representation
du(z, ) = 0% (x* — f)d?«d?p . (4.63)

This measure corresponds to the diagonal Glauber-Sudarshan P representation
defined in (4.8).

2. Complex P Representation
dula, f) = dxdp . (4.64)

Here (. f§) are treated as complex variables which are to be integrated on
individual contours C, C". The conditions for the existence of this representation
arc discussed in the appendix. This particular representation may take on
complex values so in no sense can it have any physical interpretation as
a probability distribution. However, as we shall see it is an extremely useful
representation giving exact results for certain problems and physical observ-
ables such as all the single time correlation functions.
We shall now give some examples of the complex P representation,
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(a) Coherent State |yo)

Consider a density operator with an expansion in coherent states as

= j(ﬁ(x, Pilay < f*|d?xd?p . (4.65)

Do’

Using the residue theorem

1 C A, [f’)da'dﬁ} y
= —— A, * |y = |d%ad?p . (4.66
’ 4H2H”( o >[(j%)(oc~a)(ﬁ—ﬁ) / J
DD’ ce’
Exchanging the order of integration we see the complex P function is
1 d?a' d*p’
P,f=——"‘( BB _ - 467
(. f) =~ jm PGB s (4.67)
DL‘!
Thus for a coherent state |7,
1
P f)= — —5— — (4.68)

4n (o= 70)(B = 78)

Examples of complex P functions for nonclassical fields where the Glauber—
Sudarshan P function would be highly singular are given below.

(b) Number State |n)

1 n!
P, p)= — ;e : 4.69
(1_ ﬂ) 4,’.[2 ¢ (yﬁ]n-l 1 ( )
This may be proved as follows. Using
(a|fy =izl 2mini 2 (4.70)
and
e —|x]?;2 n|”
2y =3 S @
we may write p as
|ﬂ 'ml| e 2 nom’
= jP(ac, ﬁ’)Z(N,,)1 Z(< I Bla™ pmydadp . (4.72)

Substituting (4.69) for P(«, )

(n)

- ZZ(nWrﬁ_)i,i_[a e e Oy (' dadf L (4.73)
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Choosing any contour of integration encircling the origin and using Cauchy’s
theorem

1 .
i zz2"=0 ifn=0,
=1 ifn= -1,
=0 ifn< — 1. (4.74)
We find
p=Iny<{n|.

(c) Squeezed State |y, r)

The complex P representation for a squeezed state is
P(x, )= Nexp{(x = 7)(B —7*) + cothr[(x — 7)* + (B = 7%)°]} . (4.75)

This may be normalized by integrating along the imaginary axis for r real.
The resulting normalization for this choice of contour is

1
N ———
2 sinh r
As an example of the use of the complex P representation we shall consider the
photon counting formula given by (3.107). Using the diagonal coherent-state
representation for p we may write the photon counting probability P, (7'} as

T m
(lz '“1 D" expl = 12120(T)] . (4.76)

P (T) = fd zP(z) -

An appealing feature of this equation is that P,,(7°) is given by an averaged
Poisson distribution with P(z) in the role of a probability distribution over
the complex field amplitude. It is a close analogue of the classical expression
(3.96). We know however that P(z) is not a true probability distribution and
may take on negative values, and this may cause some anxiety over the
validity of (4.76). In such cases we may consider a simple generalization of (4.76)
by using the complex P representation for p. The photocount probability is then
given by

,._7.2 _( ) }HI

m!

P.(T)= jd dz' P(z, z') — —expl[ — zz'w(T)] . (4.77)
(8

We shall demonstrate the use of this formula to calculate P, (7") for states for

which no well behaved diagonal P distribution exists.
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a) Number State

For a number state with density operator p = |n)>{n| we have

!
— explzzynl(zz') " ! (4.78)

P(Z, :") = — d_h'[

and the contours C and C’ enclose the origin. Substituting (4.77) for m > n the
integrand contains no poles and P,(T)= 0, while for m < n poles of order
n — m + 1 contribute in each integration and we obtain the result of (3.112)

d n i ; nom
PuT)= } (m)[ﬂ(Tﬂm[] — (7] : (4.79)
b) Squeezed State

For a squeezed state with density operator p = |7, ¥> {7y, r| where 7 and r are
taken to be real, we have

1 5
P(z.z')= — 3 (sinhr) Texpl{(z — 2}z — ) + cothr[(z — 7)?
Y (480)

and the contours C and C are along the imaginary axes in z and z’ space.
respectively. Performing the integration in (4.77) gives the formula, see (3.112),

PuT)= Y (:)[H{Tﬂm[l —(T)]" P, (4.81)
n—iu I
with
P, = (n'coshr)” Texp[ — 7%e? (1 + tanhr)](tanh r)”H,f(—-., ’i—— )
V' sinh 2r

where the H,(x) are Hermite polynomials. This agrees with the result of a de-
rivation using the number state representation (3.109) when we recognise that
P, =|{nly )

4.2.6 Positive P Representation

The integration measure is chosen as
du(a, p) = d?x2d?p . (4.82)

This representation allows #, § to vary independently over the whole complex
plane. It was proved in [4.5] that P(x, f§) always exists for a physical density
operator and can always be chosen positive. For this reason we call it the
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positive P representation. P(x, ) has all the mathematical properties of a genu-
ine probability. It may also have an interpretation as a probability distribution
[4.6]. Tt proves a most useful representation, in particular, for problems where
the Fokker—Planck equation in other representations may have a non-positive
definite diffusion matrix. It may be shown that provided any Fokker—Planck
equation exists for the time development in the Glauber-Sudarshan representa-
tion, a corresponding Fokker-Planck equation exists with a positive semi-
definite diffusion coefficient for the positive P representation.

Exercises

4.1 Show that if a field with the P representation Pi(x) is incident on a 50/50
beam splitter the output field has a P representation given by Py(x) = 2Pi(\,.s’5a).

4.2 Show that the Wigner function may be written, in terms of the matrix
elements of p in the eigenstates of X, as

F

] m”
Wiy, %;5) = i J dx exp(

-

1X, %5

)(11 + Xy play = xq)

where 2, = 2 + »* and 2, = — i(x — 2*).

4.3 The complex P representation for a number state {n) is

Pep) = — et
LB = - e R
Show that
atay = §dadfaf P(a, p)=n .

44 Use the complex P representation for a squeezed state |y, r> with 3 and
r both real, to show that the photon number distribution for such a state is
e

P, = (n!coshr)” 'exp[ — 72e* (1 + tanhr)](tanh ;']”Hﬁ(—,’;ﬁ) .
\/sinh 2r



